如何在小学数学教学中渗透转化的数学思想-教学解决策略

网上有关“如何在小学数学教学中渗透转化的数学思想"教学解决策略”话题很是火热,小编也是针对如何在小学数学教学中渗透转化的数学思想"教学解决策略寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

 一、 在教学新知识时渗透转化思想

例:在教学“异分母分数加减法”一课时,我是这样设计的。

1、在情境中产生关于异分母分数加减法的问题,引入异分母分数加减法的学习。

2、让学生独立思考,尝试计算异分母分数加法。

3、小组交流异分母分数加法的方法。整理并汇报。

方法1:将两个异分母分数都变成小数,再相加。

方法2:将两个异分母分数都通分变成同分母分数后,再相加。

4、归纳整理,渗透转化思想

思考以上两种方法,你有什么发现?(两种方法均是将异分母分数转化成已学过的知识,即将异分母分数转化成与其相等的小数或同分母分数之后,再相加。)……

5、回顾反思,强化思想

回顾本节课的学习,谈谈你的收获和体会。(在转化完成之后及时的反思,是对转化思想的进一步巩固与提升——进入思想的内核,再次深刻理解。)

在我们小学数学教材中,像这样,需教师巧妙地创设问题情境,让学生自主产生转化的需要来学习新知识的例子很多,需要我们教师深入分析教材,理解教材,进而挖掘出其蕴含的转化思想。

二、在数学公式推导过程中渗透转化思想

如平行四边形、三角形、梯形等图形的面积公式推导,它们均是在学生认识了这些图形,掌握了长方形面积的计算方法之后安排的,是整个小学阶段平面图形面积计算的一个重点,也是整个小学阶段中能较明显体现转化思想的内容之一。教学这些内容,一般是将要学习的图形转化成已经学会的图形,在引导学生比较之后得出将要学习图形的面积计算方法。随着教学的步步深入,转化思想也渐渐浸入学生们的头脑中。

如平行四边形面积推导,当教师通过创设情境使学生产生迫切要求出平行四边形面积的需要时,可以将“怎样计算平行四边形的面积”直接抛向学生,让学生独立自由地思考。这个完全陌生的问题,需学生调动所有的相关知识及经验储备,寻找可能的方法,解决问题。当学生将没有学过的平行四边形的面积计算转化成已经学过的长方形的面积的时候,要让学生明确两个方面:

一是在转化的过程,把平行四边形剪一剪、拼一拼,最后得到的长方形和原来的平行四边形的面积是相等的(等积转化)。在这个前提之下,长方形的长就是平行四边形的底,宽就是高,所以平行四边形的面积就等于底乘高。

二是在转化完成之后应提醒学生反思“为什么要转化成长方形的”。因为长方形的面积我们先前已经会计算了,所以,将不会的生疏的知识转化成了已经会了的、可以解决的知识,从而解决了新问题。在此过程中转化的思想也就随之潜入学生的心中。其他图形的教学亦是如此。需要注意的是转化应该成为学生在解决问题过程中的内在的迫切需要,而不应该是教师提出的要求,因为这样,学生的操作、思考都将处于被动的状态,对转化的理解则可能浮于表面。

三、在数学练习题中挖掘转化思想

在三角形内角和教学后,书中有一练习题,“求出四边形和正六边形的内角和是多少?”这一问题的解决完全依赖于转化思想,即:把四边形和正六边形都转化成若干个三角形的和。即连接对角线把四边形转化成两个三角形,那么四边形内角和就等于两个180度,即360度。而正六边形通过连接对角线转化成了四个三角形,则内角和是四个180度,即720度。教师在处理习题时,不能仅仅教给学生解题术,更重要的是要让学生收获其数学思想,用知识里蕴含的“魂”去塑造学生的灵魂。这是让学生受益终生的。

浅谈数学思想方法在小学数学教学中的渗透

如何在教学中渗透数学思想

数学思想方法是解决数学问题所采用的方法。它是数学概念的建立、数学规律的归纳、数学知识的掌握和数学问题解决的基础。在人的数学研究中,最有用的不仅仅是数学知识,更重要的是数学思想方法。小学数学中常用的数学思想方法有数形结合思想方法、对应思想方法、符号化思想方法、化归思想方法等。下面我就如何向学生渗透这些数学思想方法分别举例说明。

1数形结合的数学思想方法。

数和形是数学研究的两个主要对象,两者既有区别,又有联系,互相促进。所谓数形结合的思想方法就是通过具体事实的形象思维过渡到抽象思维的方法。数形的结合是双向的,一方面,抽象的数学概念、复杂的数量关系,借助图形使之直观化、形象化、简单化;另一方面,复杂的形体可以用简单的数量关系表示。用图解法分析问题就是运用这种方法。我从二年级开始就教学生画线段图分析应用题的数量关系。例如《现代小学数学》第三册的例题:“南庄小学秋季种树53棵,比春季多种8棵。春季种树多少棵?”先让学生找到关健句,弄清谁与谁比,谁多谁少,画出线段图:

这样做学生比较容易找到数量关系,列出正确版式,同时有克服见“多”就“加”,见“少”就“减”的思维定势。

2对应的思想方法。

对应是人们对两上集合元素之间的联系的一种思想方法。为此在教学中,我充分发挥教材优势,结合教学内容逐步渗透“对应”的数学思想方法。例如《现代小学数学》第一册的“多和少”,课本先出示散乱排列的等量的茶杯和茶杯盖图,接着重新排列整理,使每一个茶杯盖与每一个茶杯对应,直观看到“茶杯与茶杯盖相比,一个对一个,一个也不多,一个也不少”,我们就说茶杯与茶杯盖同样多。使学生初步接触一一对应的思想,初步感知两个集合的各元素之间能一一对应,它们的数量就是“同样多”。

3符号化数学思想方法。

数学的一个突出特点是符号加逻辑。而符号化思想是数学信息的载体,能大大简化运算或推理过程,加快思维的速度,提高学习效率。因此在教学中,要尽量把实际问题用数学符号来表达,还要充分把握每个数学符号所蕴含的丰富内涵和实际意义。例如《现代小学数学》中关于“1”的认识,先让学生从1架飞机、1棵树、1个女孩等具体事物中,概括出数字符号“1”,从具体的量到抽象的数。然后再从抽象的数学符号“1”到具体量,让学生列举表示“1”的具体事物,1把椅、1顶帽子、1件衣服………。

又如,教学“小于和大于”一课,从左右相等的积木的左端拿一个积森到右端。

这时右边的积木块数增多,“=”右边开口张大;左边积木数减少,“=”左边的开口缩小,边说边用左手的食指、中指摆成一个小于号,使学生认识小于号。再用同样的方法认识“大于号”。直观形象地引导学生掌握表示大小关第的符号,从中渗透符号化数学思想方法。

4“化归”的数学思想方法。

化归思想能增长学生智慧与创造能力,是数学中最普遍使用的一种思想方法。即先挖掘内在联系,把问题A转化为熟悉的问题B,再通过问题的解决方法去获得问题A的解。这样做能把问题化难为易、化生为熟、化繁为简、化整为零、化曲为直,可以促使学生提高解决问题的速度。

例如第四册《思维训练》例1,计算一个乒乓球重多少克?

本题直接求解较难。我从数学思想方法的角度去引导学生将奁、右各种球一一对应进行比较:

得出:左右两图的足球、羽毛球的个数相等,乒乓球个数不等,右图的乒乓球个数比左图的多2个,引起右边重了6克,从而把问题化归为“两个乒乓球重6克,一个乒乓球重多少克?”这样一个非常简单的算术问题,学生很容易就解决了。

实践证明,在教学中,如果我们注意从数学思想方法的角度去启发、引导学生思考,就会使学生对新知识不但能快速学会,而且能加深理解、应用,从而提高解决问题的能力,发展学生的思维能力。

小学数学教学中加强数学思想方法的渗透应注意些什么

为加强小学生的数学思维逻辑,提高数学课堂的教学效率,教师需采用科学有效的教学方法保证数学思想的有效渗透,从而激发学生的学习热情,强化学生的数学意识,带领学生运用数学思维解决实际生活问题。

教师在以往数学课堂内注重学生的数学成绩,未将学生在实际学习过程的数学方法进行充沛的指导,使得学生对数学问题具有一定的思想偏颇,加大教师的教学难度,无法全方位培养学生的综合能力。

因此,教师应结合时代潮流教学方法,根据教材具体内容展开相应的教学手段,充分加强学生的数学素养,进而提高学生对数学抽象性概念的理解,强化学生的数学意识,保证数学教学任务的有效进行。

一、小学生学习特点

由于小学生的年龄较低,对事物具有极强的好奇心,无法在数学课堂上集中注意力,继而导致自身的学习效率有所下降。所以,教师应结合学生在课上的学习状态,设计丰富的教学内容,调动学生积极性,激发学生的主观能动性,加强学生对数学基础知识的理解。教师应升华自身的教学素养,充分利用专业知识强化对学生数学思想的教育,联系实际生活内容,活跃课堂氛围,进而保证数学课堂的实效性[1]。

二、小学数学思想方法介绍

(一)数形结合法

教师要改变传统教模式中填鸭式教学方法,发挥学生的主观能动性,加强学生对事物的空间想象能力,培养学生的创新能力,使学生全面了解教师所讲的数学知识,从而激发学生的学习热情。基于此,教师可采取数形结合的教学模式帮助学生更好掌握基础知识要义,培养学生的良好学习习惯。在讲解具体内容时,教师要将抽象化概念转换为具体形象,加强学生实际的运算能力,提高数学思想在课堂上的渗透。

(二)总结法

总结法是教师常用的教学手段,通过课上最后的时间带领学生复习巩固相应的知识内容,增强学生的数学素养。因此,数学教师可将此方法融入课堂教学,加强学生对数学知识的运用能力,帮助学生建立相应的数学体系,使其能够正确解答有关数学问题,逐步培养学生的自主学习能力。由于小学阶段是学生学习的黄金时期,教师要从多方面加强对学生综合能力的培养,实现数学课堂的有效教学,保证教学进度。

(三)转化法

学生作为独立个体听取教师讲解的数学内容会产生不同的学习效果。教师要改变传统教学氛围,创设科学有效的教学环境,保持学生整节课的充沛精力,激发学生的学习兴趣。利用转化的教学方法增强学生对抽象概念的理解能力,时刻与学生沟通交流,根据学生的具体学习情况设计丰富的教学内容,继而增强学生对数学知识后的实际运用。

三、在小学数学教学中渗透数学思想方法的途径

(一)在课后总结中提炼数学思想

小学数学教材将学生所学的重点知识内容进行充分的整理,使得学生在每章完结之后都能有效复习相应概念,因此,教师应注重小学教材的布置内容,灵活运用课后知识增强学生的数学意识,完善学生的学习方法,逐步加强对学生数学问题的灵活运用。

比如在学习《图形的运动(二)》内容时,教师就要逐步引导学生对数学公式的理解能力,通过课后复习强化学生对数学问题的计算。首先教师要通过激趣导入吸引学生注意力,带领学生观察多媒体课件,明确抽对称的定义及性质,带领学生回顾相应的数学问题后,教师要让学生进行动手实践,将教材附页上的图形剪下,先折一折,再画出图形的对称轴,并让学生观察每个图形可以画多少对称轴,在学生实践过程中增强学生的数学思想。通过课后总结带领学生明确长方形、正方形、等腰梯形、等腰三角形、等边三角形、线段、菱形等图形的对称轴具有多少条,加强学生的学习效果,逐步培养学生的理性思维模式。

(二)在课堂教学中挖掘可利用的数学思想

为加强学生对数学思想的理解能力,教师应紧跟时代潮流发展,改变教学理念,摒弃传统教学思想,根据教材的具体内容与学生上课的实际情况,逐步挖掘可利用的数学思想,强化学生的逻辑思维,使得学生的学习效率不断增强[2]。

比如在学习《可能性》内容时,教师就要摒弃传统教学手法,采用科学有效的教学手段加强对学生的数学思想教育。首先通过问题引导引发学生的思考能力“抛硬币决定谁先开球公平吗?”带领学生初步体验事件发生的确定性与不确定性,并让学生列出简单的随机现象中所有可能发生的结果。其次教师要创设相应的问题情景,带领学生发现实际生活问题,如:哥哥弟弟都很想去**院看**,但是爸爸只有一张儿童票,只能给其中一个人,这时就要让学生充分思考课题采取什么样的方法保证公平,从而加深学生的可能性知识概念的运用能力,保证数学课堂的教学质量,加强学生对实际问题的数学思想。

(三)活跃数学思想氛围,调动学生积极性。

教师应明确数学思想存在于教材与学生的方方面面,需带领学生不断进行数学实践活动,侧面提高学生的数学思维逻辑,强化学生的学习方法,从多角度激发学生的学习积极性。教师要结合教材具体内容,发挥学生的主观意识,营造良好的数学思想学习氛围,采用循序渐进的教学方法,根据教材重难点知识内容,合理设计教学过程,加强学生的数学教育,发散学生的创新思维,全方位培养学生综合能力[3]。

比如在学习《百分数(一)》内容时,教师不应根据教材体现的内容进行教学,应以学生的数学思想为中心,发挥学生的创新能力。首先借用多媒体技术让学生观察每个人的不同情况,并思考如何派遣队员进行足球运动,加强学生的思考逻辑。其次,教师应让学生针对具体问题进行小组间的合作交流,强化学生的语言表达能力,活跃课堂氛围,营造良好的学习环境,激发学生对数学的学习兴趣。教师应及时了解学生所提的数学问题时刻与学生沟通交流。优化师生之间的关系,加强对学生逻辑思维的培养,实现数学思想的深度教学作用,从而提高小学数学课堂的教学质量,全面落实数学思想教育,利用丰富的教学资源提高学生自主学习意识。

结束语:

综上所述,为强化学生的数学意识,教师应全方位认识数学教材内容,利用抽象性知识体系提高学生的自主学习能力,从而实现小学课堂的有效教学。通过在课后、课时挖掘数学思想,不断加强学生对数学的认知能力,培养学生良好的学习习惯。教师应以学生为主体地位,升华自身的教学素质,使用专业的知识水平保证小学数学课堂的教学进度。

如何在小学数学教学中渗透数学思想方法

重视数学“双基”教学,是我国中小学数学教学的传统优势;但毋庸置疑,其本身也存在着诸多局限性.如何继承和发展“双基”教学,是当前数学教育研究的一个重要课题.《上海市中小学数学课程标准》对此明确指出,“应与时俱进地重新审视数学基础”,并提出了新的数学基础观,其中把数学思想方法作为数学基础知识的一项重要内容.中国科学院院士、著名数学家张景中曾指出:“小学生学的数学很初等,很简单.但尽管简单,里面却蕴含了一些深刻的数学思想.”与以往教材相比,上海市小学数学新教材更加重视数学思想方法的教学,把基本的数学思想方法作为选择和安排教学内容的重要线索.让学生通过基础知识和基本技能的学习,懂得有条理地思考和简明清晰地表达思考过程,运用数学的思想方法分析和解决问题,以更好地理解和掌握数学内容,形成良好的思维品质,为学生后续学习奠定扎实的基础.面对新课程背景下渗透数学思想方法教学的新要求,作为新教材的实施者,下面就小学数学课堂教学中渗透数学思想方法的策略,谈谈自己的一些认识与实践.

一、小学数学教学中渗透数学思想方法的着眼点

1、渗透数学思想方法应加强过程性

渗透数学思想方法,并不是将其从外部注入到数学知识的教学之中.因为数学思想方法是与数学知识的发生发展和解决问题的过程联系在一起的内部之物.教学中不直接点明所应用的数学思想方法,而应该引导学生在数学活动过程中潜移默化地体验蕴含其中的数学思想方法,切忌生搬硬套、和盘托出.例如学生写出几个商是2的除法算式,通过观察可以归纳出被除数、除数和商之间的关系,大胆猜想出商不变的规律:可能是被除数和除数同时乘以或除以同一个数(零除外),商不变;也可能是同时加上或减去同一个数,商不变.到底何种猜想为真?学生带着问题运用不完全归纳举例验证自己的猜想,最终得到了“商不变性质”.所以学生获得“商不变性质”的过程,又是归纳、猜想、验证的体验过程,绝不是从外部加上一个归纳猜想验证.学生一旦感悟到这种思想,就会联想到加减法和乘法是否也存在类似的规律,从而把探究过程延续到课外.

2、渗透数学思想方法应强调反复性

小学生对数学思想方法领会和掌握有一个“从具体到抽象,从感性到理性”的认知过程,在反复渗透和应用中才能增进理解.例如学生对极限思想的领会就需要一个较长的反复认识过程.如刚认数时,让学生看到自然数0、1、2、3……是“数不完”的,初步体验到自然数有“无限多个”;学生举例验证乘法分配律,在举不完的情况下用省略号或字母符号表示;教学梯形面积计算公式之后,让梯形的上底无限逼近于0,得到三角形的面积计算公式……让学生多次经历在有限的时空里去领略“无限”的含义,最终达到对极限思想的理解.同时在具体进行教学时,教师应放慢脚步,使学生在充分地列举、不断地体验中,感悟“无限多、无限逼近”思想.如教学“圆的认识”时,学生画了几条对称轴后,我问这样的对称轴画得完吗?有的说画不完,有的说这么小的圆应该画得完吧.于是我让学生继续画,看到学生画得有些不耐烦了,再让他们观察课件演示“不断画”的画面 ,从而确信了“圆有无数条对称轴”.数学思想方法较数学知识有更大的抽象性和概括性,只有在教学过程中反复、长期地渗透,才能收到较好的效果.

3、渗透数学思想方法应注重系统性

数学思想方法的渗透要由浅入深,对数学思想方法的挖掘、理解和应用的程度,教师应作长远的规划.一般地,每一种数学思想方法总是随着数学知识的逐步加深而表现出一定的递进性,因而渗透时要体现出孕育、形成和发展的层次性.例如在组织学习“两位数加两位数”时,要体现出“化归”思想的孕育期:学生计算“36+17”一般有“(30+10)+(6+7)、36+10+7、36+4+13、36+20-3”等方法,从中看出学生已经有将复杂问题转化为简单问题的意识.在进行两位数乘除法的教学中,要逐步引导学生对此有较清晰的认识;在教学平行四边形面积公式的推导中,应启发学生自觉运用“化归”思想去确立新知学习的方法,平行四边形的面积可以通过分割、平移,转化为长方形的面积.这样,将表面无序的各个渗透点整合成了一个整体.

4、渗透数学思想方法应适时显性化

数学思想方法有一个从模糊到清晰、从未成形到成形再到成熟的过程.在教学中,思想方法何时深藏不露,何时显山露水,应审时度势,随机应变.一般而言,在低中年级的新授课中,以探究知识、解决问题为明线,以数学思想方法为暗线.但在知识应用、课堂小结或阶段复习时,根据需要,应对数学思想方法进行归纳和概括.小学高年级学生学习了一些基本的思想方法,可以直呼其名.如在学习“除数是小数的除法”时,先让学生尝试计算“6.75÷5.4”,不少学生一时想不出办法,此时我提示:如果除数是整数能算吗?学生顿时恍然大悟,发现可以利用“商不变性质”,将“除数是小数的除法”转化成为“除数是整数的除法”来解决,于是我即刻板书“转化”,这样开门见山让学生知道运用“转化”思想可以将有待解决的问题归结到已经解决的问题.

实践表明,以上策略是一个密切联系的有机整体,它们之间相互影响,相互促进.在教学中应抓住契机,适时地挖掘和提炼,促使学生去体验、运用思想方法,建立良好的认知结构和完善的能力结构.

二、小学数学教学中渗透数学思想方法的途径

1、在教学预设中合理确定

渗透数学思想方法,教师在进行教学预设时应抓住数学知识与思想方法的有效结合点,在教学目标中体现每个数学知识所渗透的数学思想方法.

如在概念教学中,概念的引入可以渗透多例比较的方法,概念的形成可以渗透抽象概括的方法,概念的贯通可以渗透分类的方法.在解决问题的教学中,通过揭示条件与问题的联系,渗透数学解题中常用的化归、数学模型、数形结合等思想.

有时某一数学知识蕴含了多种思想方法,教师可根据需要和学生的认知特点有所侧重,合理确定.例如上海市新教材将“运算定律、性质”整合在一起学习,就是要突出“归纳类比、数学结构”的思想方法,发展学生的直觉思维,促进学生的学习迁移,实现对“运算定律、性质”的完整认识.当然在学习过程中还要用到“观察,猜想,验证”等方法.只有在教学预设中确定了要渗透的主要数学思想方法,教师才会去研究落实相应的教学策略,怎样渗透?渗透到什么程度?把渗透数学思想方法纳入到教学目标(过程与方法)中,把数学思想方法的要求融入到备课的每一环节,减少教学中的盲目性和随意性.

2、在知识形成中充分体验

数学思想方法蕴含在数学知识之中,尤其蕴含于数学知识的形成过程中.在学习每一数学知识时,尽可能提炼出蕴含其中的数学思想方法,即在数学知识产生形成过程中,让学生充分体验.

如我在教学“角”的知识时,先让学生在媒体上观察“巨大的激光器发送了两束激光线”,然后由学生确定一点引出两条射线画角,感知角的“静止性”定义以及角的大小与所画边的长短无关的观念.再让学生用“两条纸片和图钉”等工具进行“造角”活动,不经意之间学生发现角可以旋转,并且随着两条纸片叉开的大小角又可以随意地变化.这样“角”便定义为“一条射线绕着它的端点旋转而成的”,这就是角的“运动性”定义,体现着运动和变化的数学思想.学生在“画角、造角”活动中经历了“角”的产生、形成和发展,从中感悟的数学思想是充分与深刻的.

数学思想方法呈现隐蔽形式.学生在经历知识形成的过程中,通过观察、实验、抽象、概括等活动体验到知识负载的方法、蕴涵的思想,那么学生所掌握的知识就是鲜活的、可迁移的,学生的数学素质才能得到质的飞跃

3、在方法思考中加强深究

处理数学内容要有一定的方法,但数学方法又受数学思想的制约.离开了数学思想指导的数学方法是无源之水、无本之木.因此在数学方法的思考过程中,应深究数学的基本思想.

如我在教学四年级“看谁算得巧”一课时,学生计算“1100÷25”主要采用了以下几种方法:①竖式计算 ②1100÷25=(1100×4)÷(25×4)③1100÷25=1100÷5÷5 ④1100÷25=11×(100÷25) ⑤1100÷25=1100÷100×4 ⑥ 1100÷25=1000÷25+100÷25.在学生陈述了各自的运算依据后,引导学生比较上述方法的异同,结果发现方法①是通法,方法②——⑥是巧法.方法②——⑥虽各有千秋,方法③、④、⑥运用了数的分拆,方法②属等值变换,方法⑤类似于估算中的“补偿”策略,但殊途同归,都是抓住数据特点,运用学过的运算定律、性质转化为容易计算的问题.学生对各种方法的评价与反思,就是去深究方法背后的数学思想,从而获得对数学知识和方法的本质把握.

新课程所倡导的“算法多样化”的教学理念,就是让学生在经历算法多样化的学习过程中,通过对算法的归纳与优化,深究背后的数学思想,最终能灵活运用数学思想方法解决问题,让数学思想方法逐步深入人心,内化为学生的数学素养.

4、在问题解决中精心挖掘

在数学教学中,解题是最基本的活动形式.任何一个问题,从提出直到解决,需要具体的数学知识,但更多的是依靠数学思想方法.因此,在数学问题的探究发现过程中,要精心挖掘数学的思想方法.

如我在教学三年级“植树问题”时,首先呈现:在一条100米长的路的一侧,如果两端都种,每2米种一棵,能种几棵?面对这一挑战性的问题,学生纷纷猜测,有的说种50棵,有的说种51棵.到底有几棵?我们能否从“种2、3棵……”出发,先来找一找其中的规律呢?随着问题的抛出,学生陷入了沉思.如果把你们的一只手5指叉开看作5棵树,每两棵树之间就有一个“间隔”(板书),一共有几个间隔?学生若有所思地回答是4个.如果种6棵、7棵……,棵数与间隔的个数有怎样的关系呢?于是我启发学生通过动手摆一摆、画一画、议一议,发现了在两端都种时棵数和间隔数之间的数量关系(棵数=间隔数+1),顺利地解决了上述问题.然后又将问题改为“只种一端、两端不种时分别种几棵”,学生运用同样的方法兴趣盎然地找到了答案.以上问题解决过程给学生传达这样一种策略:当遇到复杂问题时,不妨退到简单问题,然后从简单问题的研究中找到规律,最终来解决复杂问题.通过这样的解题活动,渗透了探索归纳、数学建模的思想方法,使学生感受到思想方法在问题解决中的重要作用.

因此,教师对数学问题的设计应从数学思想方法的角度加以考虑,尽量安排一些有助于加深学生对数学思想方法体验的问题,并注意在解决问题之后引导学生进行交流,深化对解题方法的认识.

5、在复习运用中及时提炼

数学思想方法随着学生对数学知识的深入理解表现出一定的递进性.在课堂小结、单元复习和知识运用时,教师要引导学生自觉地检查自己的思维活动,反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对某种数学思想方法进行概括与提炼,使学生从数学思想方法的高度把握知识的本质,提升课堂教学的价值.

如我在教学五年级“平面图形的面积复习”时,让学生写出各种平面图形(长方形、正方形、平行四边形、三角形、梯形和菱形)的面积计算公式后提问:这些计算公式是如何推导出来的?每位同学选择1~2种图形,利用学具演示推导过程,然后在小组内交流.交流之后我又指出:你能将这些知识整理成知识网络吗?当学生形成知识网络后,再次引导学生将这些平面图形面积计算公式统一为梯形的面积计算公式.通过以上活动,深化了对“化归”思想的理解,重组了学生已有的认知结构,拓展了数学思维,数学思想方法作为数学认知结构形成的核心起到了重要的组织作用.

同时在教学中,如果只满足于对数学思想的感悟和体验,还不足以肯定学生已领会了所用的数学思想方法.只有当学生将某一思想方法应用于新的情境,能够解决其他有关问题并有所创意时,才能肯定学生对这一数学方法有了较为深刻的认识.如学生对乘法有了初步认识,我就让他们把“6+6+6+3”改写成简便的算式.大多数学生做出了“3×6+3”与“4×6-3”的改写,但有个别学生写出了“3×7”的算式.其运算之巧妙,思路之独特,对于一个二年级小朋友而言,是难能可贵的.其次,当学生的创造力正处于某种良好的准备状态时,教师应不失时机地诱导他们去创造性解题.如在学生掌握长方体、正方体的体积计算之后,我呈现一块不规则的橡皮泥,要求学生尝试不同的方案计算体积.学生经过独立思考与合作交流,找到三种解决方案:①先捏成长方体或正方体,再计算 ②浸没在长方体水槽中,计算上升部分水的体积 ③称出橡皮泥的重量,再除以每立方厘米橡皮泥的重量(比重).解决方案的获得来自于学生对“化归”思想的主动运用,然后予以进一步提炼,使数学思想方法在知识能力的形成过程中共同生成.

从以上实践不难看出,如果把教师的教学预设看作教学渗透的前期把握,那末数学知识的形成过程、数学方法的思索过程、问题解决的发现过程以及复习运用的归纳过程就是学生形成数学思想方法的源泉.学生在学习过程中要自己去体验、深究、挖掘、提炼,从中揣摩和感受数学思想方法,形成自身的数学思考方法,提高分析问题、解决问题的能力.

三、问题与思考

美国教育心理学家布鲁纳指出:掌握基本的数学思想方法,能使数学更易于理解和记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”.在小学数学教学中教师应站在数学思想方法的高度,以数学知识为载体,兼顾小学生的年龄特点,把握时机、及时渗透数学思想方法,引导学生主动运用数学思想方法的意识,促进学生学习数学知识和掌握思想方法地均衡发展,为他们后继学好数学打下扎实的基础.

但在教学实践研究中,我又面临着如下问题与思考:

1、新课程将数学思想方法纳入到“知识与技能”这一教学目标范畴,丰富了数学知识的内涵.但在小学阶段的“内容和要求”中,对渗透数学思想方法的教学要求略显笼统,没有明确细化为适合不同学段学生的具体渗透内容与要求,并形成系列,这给教师的教学把握带来一定困难.

2、对于小学生数学学习的评价、目前仍偏重于传统意义上的“双基”,体现与运用数学思想方法的数学问题偏少,不利于考察教师渗透数学思想方法的教学效果和学生的数学素养,对于学生应用数学思想方法促进数学思维活动的创新意识的评价有待于进一步的探索.

3、小学数学知识比较浅显,但蕴含着丰富的数学思想方法,如何处理好数学知识教学和思想方法渗透之间的关系,以至形成适合不同学段学生进行数学思想方法渗透的教学模式,应作深入的思考与实践.

请采纳

如果你认可我的回答,敬请及时采纳,

~如果你认可我的回答,请及时点击采纳为满意回答按钮

~~手机提问的朋友在客户端右上角评价点满意即可.

~你的采纳是我前进的动力

~~O(∩_∩)O,记得好评和采纳,互相帮助

《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》

——小学数学教学中渗透数学思想方法思考与实践

汇报:兆麟小学 农丰小学 兰陵小学

今天由我们三人汇报的题目是:《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》

中国科学院院士、著名数学家张景中曾指出:“小学生学的数学很初等,很简单。但尽管简单,里面却蕴含了一些深刻的数学思想。”

数学知识和数学思想方法作为小学数学学习的两条线索,一明一暗,相互支撑,其中数学思想方法提示了数学的本质和发展规律,可以说是数学的精髓。下面我们就谈谈数学思想方法。

一、为什么要在教学中渗透数学思想方法

1、基本数学思想方法对学生的发展具有重要意义

一位教育学家曾指出:“作为知识的数学出校门不到两年可能就忘了,惟有深深铭记在头脑中的是数学煌精神和数学的思想、研究方法、着眼点等,这些随时随地发生作用使学生终身受益。”

数学的思想方法是数学的灵魂和精髓,掌握科学的数学思想方法对提升学生思维品质,对数学学科的后继学习,对其他学得的学习,乃至学生的终身发展有十分重要的意义。在小学数学教学中有意识地渗透一些基本数学思想方法,是增强学生数学观念,形成良好思维素质的关键。不仅能使学生领悟数学的真谛,懂得数学的价值学会数学地思考和解决问题,还可以把知识的学习与能力的培养、智力的发展有机地统一起来。

2.渗透基本数学思想方法是落实新课标精神的需求

数学课程标准把“四基”:基本知识、基本技能、基本思想、基本活动经验作为目标体系。基本思想是数学学习的目标之一,其重要性不言而喻。新教材是把一些重要的数学思想方法通过学生日常生活中最简单的事例呈现出来,并运用操作、实验等直观手段解决这些问题。从而加深学生对数学概念、公式、定理、定律的理解,提高学生数学能力和思维品质,这是数学教育实现从传授知识到培养学生分析问题、解决问题能力的重要途径,也是小学数学新课程改革的真正内涵之在。

二、课教材渗透了哪些数学思想

小学数学中最上位的思想就是演绎和归纳,是数学教学的主线。还有一些常用的数学思想方法:

对应思想、——是指对两个集合元素之间联系的把握。许多数学方法来源于对应思想。比如学生在计算练习时常常有 10 ?

20 ×2 ?

30 ?

40 ?

50 ?

形式出现,这其实就体现了对应的思想。如数轴上的一个点就对应一个数,任何一个数都能在数轴上找到相对应的点,一一对应,呈现完美。

符号化思想、——数学发展到今天,已成为一个符号的世界。英国著名数学家素曾说:“什么是数学?数学就是符号加逻辑。”符号化思想即指人们有意识地、普遍地运用符号化的语言去表述研究的对象。符号化思想在整个小学都有较多的渗透,

例如:阿拉伯数字:1、2、3、5、6、……

+、–、 、 等运算符号;

>、<</SPAN>、=、等表示关系的符号;

( )、[ ] 等括号;

表示数的字母:x、y、z等。

字母表示公式:长方形、正方形的面积S=ab S=a?

字母表示计量单位符号:m\cm\dm\mm\g\km等。

集合思想——把一组对象放在一起作为讨论的范围,这就是集合的思想。如:一年级教材在教孩子认数的时候,用一个圈把一些图画圈在里面,这就是孩子最初所接触到集合雏形,

也是第一次对小学生渗透这种集合思想。在以后后的教学中慢慢体现并集、差集、空集等思想。

极限思想——我国古代就对极限思想的思考,古代杰出的数学家刘徽的“割圆术”就是利用极奶子思想的典型。极限思想是研究变量在无限变化中的变化趋势的思想,运用这一思想,人们的思维可以从有限空间向无限空间,从静态向动态发展,从具体到抽象升华。

统计思想——小学数学中的统计思想主要体现在:简单的数据整理和求平均数,简单的统计表和统计图,学生在会整理、制表、作图的同时要能从数据、图表中发现数学问题和数学信息,得出相关的结论。、

假设思想——是先对题目标中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

比较思想——是数学教学中常见的思想方法之一,也是促进学生思维发展的手段。在数学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快找到解题途径。

类比思想——是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边行面积公式和三角形面积公式。这种思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。

转化思想——是一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到。

分类思想——体现对数学对象的分类及其分类的标准如自然数的分类,三角形按边分按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。

数形结合思想——数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的帮助分析数量关系。

代换思想——他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?

可逆相思——它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题的方法,有时可以代线段图逆推。如:一辆汽车从甲地开往乙地,第一小时行了1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。

化归思想方法——把有可能解决或示解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。

变中抓不变的思想方法——在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解,如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?

数学模型的思想方法——是对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析等过程,得到简化和假设,它是生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。

这些数学思想方法是数学的本质之所在、是数学的精髓,只有方法的掌握、思想的形成,才能使学生受益终生。下面我们就结合自己对数学思想方法的学习与实践,与大家一起交流。

三、让课堂彰显思想的魅力

首先说说备课:备课时要研读教材、明确目标、设计预案,充分挖掘数学思想方法 

如果课前教师对教材内容的教学适合渗透哪些思想方法一无所知,那么课堂教学就不可能有的放矢。因此我们在备课时,不应只见直接写在教材上的数学基础知识与技能,而是要进一步钻研教材,创造性地使用教材,挖掘隐含在教材中的数学思想方法,并在教学目标中明确写出渗透哪些数学思想方法,并设计数学活动落实在教学预设的各个环节中,实现数学思想方法有机地融合在数学知识的形成过程中。其实,每册教材都有数学思想方法的渗透,我们每册选取有代表性的单元。

这相对所有教学内容只是冰山一角。为此,我在研读教材时,常常要多问自己几个为什么,将教材的编排思想内化为自己的教学思想,如:怎样让学生经历知识的产生与发展的过程?怎么样才能唤起学生进行深层次的数学思考?如何激发学生主动探究新知识的积极性?如何依据教材适时地渗透数学思想方法等等。只有我自己做到胸有成竹,方能给学生渗透相应的数学思想。

2上课:创设情境、建立模型、解释应用,渗透数学思想方法

数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。这就要求教师在课堂教学中,在揭示数学知识的形成过程中渗透数学思想方法,在教给学生数学知识的同时,也获得数学思想方法上的点化。教师积极地在课堂中渗透数学思想方法,体现了教师在教学中的大智慧,也为学生的学习开辟了一个广阔的新天地。不同的教学内容,不同的课型,可据其不同特点,恰当地渗透数学思想方法。以下面三种课型为例。

①新授课:探索知识的发生与形成,渗透数学思想方法

如在《三角形分类》一课中,教师给学生提供了三角形学具先放手让学生在小组合作中尝试对三角形进行分类,学生从关注三角形的角与边的特征入手,借助学具看一看、比一比、量一量、分一分、想一想,寻找特征、抽象共性,在比较中将具有相同特征的三角形归为一类,在分类中抽象出图形的共同特征。这样的教学,学生经历了三角形分类的过程,渗透了分类、集合的思想,丰富了分类活动的经验,形成分类的基本策略,发展了归纳能力。

在数学教学中,解题是最基本的活动形式。任何一个问题,从提出直到解决,需要具体的数学知识,但更多的是依靠数学思想方法。因此,在数学问题的探究发现过程中,要精心挖掘数学的思想方法。

如我在教学三年级“植树问题”时,首先呈现:在一条100米长的路的一侧,如果两端都种,每2米种一棵,能种几棵?面对这一挑战性的问题,学生纷纷猜测,有的说种50棵,有的说种51棵。到底有几棵?我们能否从“种2、3棵……”出发,先来找一找其中的规律呢?随着问题的抛出,学生陷入了沉思。如果把你们的一只手5指叉开看作5棵树,每两棵树之间就有一个“间隔”(板书),一共有几个间隔?学生若有所思地回答是4个。如果种6棵、7棵……,棵数与间隔的个数有怎样的关系呢?于是我启发学生通过动手摆一摆、画一画、议一议,发现了在两端都种时棵数和间隔数之间的数量关系(棵数=间隔数+1),顺利地解决了上述问题。然后又将问题改为“只种一端、两端不种时分别种几棵”,学生运用同样的方法兴趣盎然地找到了答案。以上问题解决过程给学生传达这样一种策略:当遇到复杂问题时,不妨退到简单问题,然后从简单问题的研究中找到规律,最终来解决复杂问题。通过这样的解题活动,渗透了探索归纳、数学建模的思想方法,使学生感受到思想方法在问题解决中的重要作用。

因此,教师对数学问题的设计应从数学思想方法的角度加以考虑,尽量安排一些有助于加深学生对数学思想方法体验的问题,并注意在解决问题之后引导学生进行交流,深化对解题方法的认识。

②练习课:经历知识的巩固与应用,渗透数学思想方法

数学知识的巩固,技能的形成,智力的开发,能力的培养等需要适量的练习才能实现。练习课的练习不同于新授课的练习,新授课中的练习主要是为了巩固刚学过的新知,习题侧重于知识方面;而练习课中的练习则是为了在形成技能的基础上向能力转化,提高学生运用知识解决实际问题的能力,发展学生的思维能力。因此教师要有数学思想方法教学意识,在练习课的教学中不仅要有具体知识、技能训练的要求,而且要有明确的数学思想方法的教学要求。例如在《6的乘法口诀》练习课中,学生在完成想一想、算一算的练习中,先让学生计算,再通过交流自己的算法,以“7×6+6”为例,借助用课件演示来理解式子的意义,运用数形结合启发将式子转化为8×6来计算,渗透变换的思想,懂得两个式子形式虽不同,表示的意义以及结果是相同的。又如让学生算一算每个图中各有多少个格子,之后教师要启发学生怎样将图形转化成同第一个图形那样的图形,可以直接用口诀计算?学生通过实际操作,动手剪一剪、拼一拼,转化成长方形后分别用6×3、4×3来计算,从而感受到转化思想的魅力。

“咱们要教给孩子们什么?”“数学的学习主要是学习思想和方法以及解题的策略”,因此我们要在练习的过程中不断地总结和探索,从中寻找共性,呈现给孩子最有价值、最本质的东西——数学思想方法。

如我在教学四年级“看谁算得巧”一课时,学生计算“1100÷25”主要采用了以下几种方法:①竖式计算②1100÷25=(1100×4)÷(25×4)③1100÷25=1100÷5÷5 ④1100÷25=11×(100÷25) ⑤1100÷25=1100÷100×4 ⑥ 1100÷25=1000÷25+100÷25。在学生陈述了各自的运算依据后,引导学生比较上述方法的异同,结果发现方法①是通法,方法②——⑥是巧法。方法②——⑥虽各有千秋,方法③、④、⑥运用了数的分拆,方法②属等值变换,方法⑤类似于估算中的“补偿”策略,但殊途同归,都是抓住数据特点,运用学过的运算定律、性质转化为容易计算的问题。学生对各种方法的评价与反思,就是去深究方法背后的数学思想,从而获得对数学知识和方法的本质把握。

新课程所倡导的“算法多样化”的教学理念,就是让学生在经历算法多样化的学习过程中,通过对算法的归纳与优化,深究背后的数学思想,最终能灵活运用数学思想方法解决问题,让数学思想方法逐步深入人心,内化为学生的数学素养。

③复习课:学会知识的整理与复习,强化数学思想方法

复习有别于新知识的教学。它是在学生基本掌握了一定的数学知识体系、具备了一定的解题经验,学生基本认识了某些数学思想方法的基础上的复习数学。数学思想方法总是隐含在数学知识中,它与具体的数学知识结合成一个有机整体,但它却无法像数学知识那样编为章节来教学,而是渗透于全部的小学数学知识中。不同章节的数学知识往往蕴含着不同的数学思想方法,有时在一章或一单元的教学中,又涉及很多的数学思想方法。因此教师在上复习课前,教师要能总体把握教材中隐含的思想方法,明确前后知识间的联系,做到“瞻前顾后”,并把数学思想方法的渗透落实到教学计划中。复习时,除了帮助学生掌握好知识与技能,形成良好的认知结构外,还必须加强数学思想方法的渗透,适时地对某种数学思想方法进行揭示、概括和强化,对它的名称、内容及其运用等予以点拨,使学生从数学思想方法的高度把握知识的本质和内在的规律,逐步体会数学思想方法的价值。

数学思想方法随着学生对数学知识的深入理解表现出一定的递进性。在课堂小结、单元复习和知识运用时,教师要引导学生自觉地检查自己的思维活动,反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对某种数学思想方法进行概括与提炼,使学生从数学思想方法的高度把握知识的本质,提升课堂教学的价值。

如我在教学五年级“平面图形的面积复习”时,让学生写出各种平面图形(长方形、正方形、平行四边形、三角形、梯形和菱形)的面积计算公式后提问:这些计算公式是如何推导出来的?每位同学选择1~2种图形,利用学具演示推导过程,然后在小组内交流。交流之后我又指出:你能将这些知识整理成知识网络吗?当学生形成知识网络后(如下图),再次引导学生将这些平面图形面积计算。如在复习多边形的面积推导时,教师可引导学生思考:平行四边形、三角形、梯形的面积计算公式各是怎样推导的?有什么共同点?让学生提炼概括:学习平行四边形面积计算时,我们应用割补法把它转化成学过的长方形来推导;学习三角形和梯形的面积计算时,我们用两个完全相同的图形来拼合或把一个图形割补转化成学过的图形来推导……经过系列概括提炼,学生得出其中重要的思想方法——转化思想。学生一旦掌握了数学思想方法,不仅能使学生的知识结构更完善,还特别有助于今后的学习和运用。因为掌握了数学的思想方法,学生面对新的问题时将懂得怎样去思考,真正实现质的“飞跃”。

(3)作业:掌握知识、形成技能、发展智力,应用数学思想方法

精心设计作业也是渗透数学思想方法的一条途径。把作业设计好,设计一些蕴含数学思想方法的题目,采取有效的练习方式,既巩固了知识技能,又有机地渗透了数学思想方法,一举两得。为此教师布置作业要有讲究,在学生作业后,要不失时机地恰当地点评,让学生不仅巩固所学知识、习得解题技能,更重要的是能悟出其中的数学规律、数学思想方法。再如一位六年级老师布置了下面这道课后思考题。

在作业讲评中,教师不仅要给出答案,更重要的是启发学生思考:你是怎样算的?是怎么想的?其中运用了什么思想方法? 结合上图引导学生概括出其中的思想与方法:类比思想、数学建模思想、极限的思想、数形结合的思想。

(4)课外:培养兴趣、增长见识、培养能力,提升数学思想方法

学校开展数学课外活动是课内教学的重要补充。根据学生的学习水平在年段里开设有关数学思想方法内容的讲座,如果平时教学中的数学思想方法的点滴渗透是“美味点心”的话,那么专题讲座对学生来说就是“丰盛大餐”了,学生比较系统地了解了常见的数学思想方法以及应用,拓展学生的眼界;数学思想方法的渗透和数学课外实践活动相结合可以使二者相得益彰,定期开展数学实践活动可以发展学生的动手实践能力和创新意识,发展学生应用数学思想方法解决问题的能力;定期开展数学智力竞赛,不但激发优生学习数学的积极性,也考察学生掌握数学思想方法的情况;学生编数学小报、出板报等活动,可以增长学生见识,了解较多相关知识。形式多样的数学课外活动,使数学思想方法潜移默化,引导学生在学与用中提升了对数学思想方法的认识。

关于“如何在小学数学教学中渗透转化的数学思想"教学解决策略”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(23)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 丹易的头像
    丹易 2025年11月29日

    我是司凯号的签约作者“丹易”

  • 丹易
    丹易 2025年11月29日

    本文概览:网上有关“如何在小学数学教学中渗透转化的数学思想"教学解决策略”话题很是火热,小编也是针对如何在小学数学教学中渗透转化的数学思想"教学解决策略寻找了一些与之相关的一些信息进行分...

  • 丹易
    用户112901 2025年11月29日

    文章不错《如何在小学数学教学中渗透转化的数学思想-教学解决策略》内容很有帮助

联系我们:

邮件:司凯号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信