网上有关“因子分析法和主成分分析法的区别与联系是什么?”话题很是火热,小编也是针对因子分析法和主成分分析法的区别与联系是什么?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
联系:因子分析法和主成分分析法都是统计分析方法,都要对变量标准化,并找出相关矩阵。区别:在主成分分析中,最终确定的新变量是原始变量的线性组合,因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系。
1.因子分析法通过正交变换,将一组可能具有相关性的变量转换为一组线性不相关的变量,称为主成分。它主要用于市场研究领域。在市场研究中,研究人员关注一些研究指标的整合或组合。这些概念通常通过分数来衡量。人口学、数量地理学、分子动力学模拟、数学建模、数学分析等学科。因子分析和主成分分析都是统计分析方法,都需要对变量进行标准化,找出相关矩阵。
2.因子分析可以在许多变量中发现隐藏的代表性因素。主成分分析的原理是尝试将原始变量重新组合成一组新的独立综合变量。因子分析在主成分分析的基础上增加了一个旋转函数。这种轮换的目的是更容易地命名和解释因素的含义。如果研究的重点是指标与分析项目之间的对应关系,或者想要对得到的指标进行命名,建议使用因子分析。
3.主成分分析法是根据实际需要,尽量选取尽可能少的求和变量,以反映原始变量的信息。这种统计方法称为主成分分析或主成分分析,这也是一种处理降维的数学方法。主成分分析试图用一套新的不相关的综合指标取代原有指标。因子分析是社会研究的有力工具,但它不能确定一项研究中有多少因素。当研究中选择的变量发生变化时,因素的数量也会发生变化。
:霍特林将这种方法推广到随机向量的情况。信息的大小通常由方差或方差的平方和来衡量。因子分析最早由英国心理学家C.E.斯皮尔曼提出。他发现学生在不同科目的成绩之间有一定的相关性。一门学科成绩好的学生往往在其他学科成绩更好,因此他推测是否有一些潜在的共同因素或一些一般的智力条件影响学生的学业成绩。
通过因子分析中一个选项保存因子得分,然后系统会在原数据最后保存生成3列因子得分,将假设为a1、a2、a3代表3个因子,然后根据因子分析得出三个因子的特征根值,分别计算粗3个因子的权重,分别为各自的特征根值/三个因子特征根值之和。
然后综合因子得分=a1*对应权重+a2*对应权重+a3*对应权重,之后就根据综合因子得分进行大小排名即可。
扩展资料
(i)因子分析法的分析步骤
⑴确认待分析的原变量是否适合作因子分析。
⑵构造因子变量。
⑶利用旋转方法使因子变量更具有可解释性。
⑷计算因子变量得分。
(ii)因子分析的计算过程:
⑴将原始数据标准化,以消除变量间在数量级和量纲上的不同。
⑵求标准化数据的相关矩阵;
⑶求相关矩阵的特征值和特征向量;
⑷计算方差贡献率与累积方差贡献率;
⑸确定因子:
设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标;
⑹因子旋转:
若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。
⑺用原指标的线性组合来求各因子得分:
采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。
⑻综合得分
以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。
F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )
此处wi为旋转前或旋转后因子的方差贡献率。
⑼得分排序:利用综合得分可以得到得分名次。
百度百科-因子分析法
关于“因子分析法和主成分分析法的区别与联系是什么?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
评论列表(3条)
我是爱司号的签约作者“边雨萱”
本文概览:网上有关“因子分析法和主成分分析法的区别与联系是什么?”话题很是火热,小编也是针对因子分析法和主成分分析法的区别与联系是什么?寻找了一些与之相关的一些信息进行分析,如果能碰巧解...
文章不错《因子分析法和主成分分析法的区别与联系是什么?》内容很有帮助